1.

An electron (q = -e) completes half of a circular orbit of radius r around a nucleus with Q = +3e.



a. How much work is done on the electron as it moves from i to f? Give either a numerical value or an expression from which you could calculate the value if you knew the radius. Justify your answer.

$$W = \int_{1}^{2} \vec{F} \cdot d\vec{s} \qquad \vec{F} \perp d\vec{s} \qquad : \vec{F} \cdot d\vec{s} = 0 \qquad : [W = 0]$$

b. By how much does the electric potential energy change as the electron moves from i to f?

c. Is the electron's speed at f greater than, less than, or equal to its speed at i?

2.

Inside a parallel-plate capacitor, two protons are launched with the same speed from point 1. One proton moves along the path from 1 to 2, the other from 1 to 3. Points 2 and 3 are the same distance from the negative plate.



a. Is  $\Delta U_{1\rightarrow 2}$ , the change in potential energy along the path  $1\rightarrow 2$ , larger than, smaller than, or equal to  $\Delta U_{1\rightarrow 3}$ ? Explain.

Same. 
$$\Delta U_{1\rightarrow 2} = \Delta U_{1\rightarrow 3}$$
  
 $\Delta U = -W$ . Electric force is conservative.  
 $\Delta W$  work is path indep s.t.  $W_{1\rightarrow 2} = W_{1\rightarrow 3}$   $\Delta U_{1\rightarrow 2} = \Delta U_{1\rightarrow 3}$ .

b. Is the proton's speed  $v_2$  at point 2 larger than, smaller than, or equal to  $v_3$ ? Explain.

**PHYS 121** 

3.

The figure shows two points inside a capacitor. Let V = 0 V at the negative plate.

a. What is the ratio  $V_2/V_1$  of the electric potentials at these two points? Explain.

$$\Delta V = -\int_{0}^{2\pi} E \cdot d\vec{x} = -Ex \qquad V(0) = 0$$

$$= -Ex \qquad \frac{V_{2}}{V_{1}} = \frac{X_{2}}{X_{1}} = 3$$



b. What is the ratio  $E_2/E_1$  of the electric field strengths at these two points? Explain.

Between the plates of a capacitor, E = const.

$$\stackrel{\sim}{=} \frac{E_Z}{E_1} = |.$$

4.

A capacitor with plates separated by distance d is charged to a potential difference  $\Delta V_{\rm C}$ . All wires and batteries are disconnected, then the two plates are pulled apart (with insulated handles) to a new separation of distance 2d.

a. Does the capacitor charge Q change as the separation increases? If so, by what factor? If not, why not?

$$C = Q$$
 $AV_{C}$ 

If plates are not connected to anything,

there can be no flow of charge. Q does not change

b. Does the electric field strength E change as the separation increases? If so, by what factor? If not, why not?

For large charged sheets, E is indep. of position.

- E does not change.

c. Does the potential difference  $\Delta V_{\rm C}$  change as the separation increases? If so, by what factor? If not, why not?

ave = Q c = Eof if d be doubles, then C is cut in half.

If C decreases by Z, thu (1Vc doubles.)

5.

The figure shows two points near a positive point charge.

a. What is the ratio  $V_1/V_2$  of the electric potentials at these two points? Explain.

$$V = \frac{kQ}{r} \qquad \therefore \quad \frac{V_1}{V_2} = \frac{r_2}{r_1} = 3$$

b. What is the ratio  $E_1/E_2$  of the electric field strengths at these two points? Explain.

$$E = \frac{kQ}{r^2} \qquad = \frac{E_1}{E_2} = \left(\frac{r_2}{r_1}\right)^2 = 9$$

- 6. An inflatable metal balloon of radius R is charged to a potential of 1000 V. After all wires and batteries are disconnected, the balloon is inflated to a new radius 2R.
  - a. Does the potential of the balloon change as it is inflated? If so, by what factor? If not, why not?

To make it easy, treat bolloon as a sphere.

$$V_1 = \frac{kQ}{R}$$
 if balloon is isolated from surroudings, the Q is const.  
 $V_2 = \frac{kQ}{2R}$  is balloon's potential decreases by a factor of Q.

b. Does the potential at a point at distance r = 4R change as the balloon is inflated? If so, by what factor? If not, why not?

For a point atside a charged sphere, potential is like that of a pt. charge at centre of sphere.

$$V = \frac{kQ}{r}$$
 if  $at r = 4R$ , it doesn't matter if balloon radius is  $R$  or  $2R$ .

3 Potential is still KQ

7. On the axes below, draw a graph of V versus x for the two point charges shown.

a.



b.



For a single pt. charge V= KQ